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Upper bounds on the energy dissipation in 
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Rigorous upper bounds on the viscous dissipation rate are identified for two com- 
monly studied precessing fluid-filled configurations : an oblate spheroid and a long 
cylinder. The latter represents an interesting new application of the upper-bounding 
techniques developed by Howard and Busse. A novel ‘background method recently 
introduced by Doering & Constantin is also used to deduce in both instances an 
upper bound which is independent of the fluid’s viscosity and the forcing precession 
rate. Experimental data provide some evidence that the observed viscous dissipation 
rate mirrors this behaviour at sufficiently high precessional forcing. Implications are 
then discussed for the Earth’s precessional response. 

1. Introduction 
The enforced precession of a fluid-filled spinning container has become a popular 

and well-established experimental arena in which to study rotating fluids. For rapidly 
rotating fluids (where the Ekman number E is small), a small applied precession 
presents a particularly ‘clean’ way to excite inertial waves whether through direct 
forcing in the case of a spinning cylinder (Manasseh 1992, 1994; Kobine 1995) or 
indirectly by parametric resonance in a spinning oblate spheroid (Malkus 1968; Vanyo 
1984; Vanyo et al. 1995). Beyond their initial excitation (Wood 1966; Kerswell 1993; 
Mahalov 1993), however, little is understood about how these inertial waves evolve. In 
particular, their tendency to suddenly and dramatically collapse to small-scale disorder 
still remains an elusive puzzle. Understandably, given the uncertainties surrounding 
this transition process, no theoretical results are as yet available to characterize the 
resultant precessionally forced turbulent flow. However, in many applications, such as 
the control of spin-stabilized projectiles or spacecraft with liquid payloads (see Selmi 
& Herbert 1995 for references), estimating the enhanced rate at which energy can be 
consumed by a precessionally stirred turbulent fluid is of fundamental concern. In 
this paper, we take the first steps towards supplying such an estimate by producing 
rigorous upper bounds on the rate of energy dissipation possible in a precessing 
system. 

The particular emphasis here is upon obtaining upper bounds in the precessing 
oblate spheroidal system which serves to model the Earth’s precessing outer core. 
A long-standing issue in geophysics has been whether the Earth’s precession is an 
important driving agency for the complicated fluid motions thought necessary in the 
outer core to sustain the Earth’s magnetic field against Ohmic losses. Malkus’s initial 
suggestion ( 1963, 1968) envisaging a fully developed ‘magnetoturbulent’ flow driven 
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by the precessional torque was clearly motivated by his experimental hydrodynamic 
observations. However, the speculative nature of his accompanying arguments de- 
scribing this magnetoturbulence tended to deflect attention away from the underlying 
idea (Rochester et al. 1975, see also Toomre 1966; Stacey 1973). Critiques focused 
upon establishing the energetic irrelevance of the laminar precessional response to 
the geodynamo (Loper 1975; Rochester et al. 1975) rather than considering the fully 
turbulent case. Here, we hope to rectify this by assessing the potency of the Earth’s 
precession in supplying energy to the outer-core fluid. The problem considered is 
only the simpler hydrodynamic one for which a rigorous upper bound on the rate 
of viscous dissipation is derived, the hope being, of course, that this upper bound 
is entirely representative of the realized turbulent values. A discussion on how this 
dissipation is likely to be partitioned between viscous and Ohmic heating in the 
hydromagnetic case is, however, beyond the scope of this paper. 

Upper-bounding theory represents an approach towards understanding turbulent 
flows without the introduction of heuristic assumptions which compromise other 
theories of turbulence. Formally, the underlying premise is that a fluid field becomes 
turbulent for a purpose which manifests itself in the maximization of some flow 
functional (Malkus 1954, see also Howard 1963, 1972 and Busse 1969a,b, 1970, 
1978). The objective is then to identify what this functional is, i.e. what the fluid 
is ‘trying to do’, through comparing the observed turbulent field with the optimizing 
flow deduced from the associated variational problem for this functional. Typically, 
attention has been focused upon the most obvious global quantities such as heat 
or momentum transport since these are of immediate physical interest and can 
be measured experimentally. However, the search for better functional candidates 
remains an active area of inquiry (Ierley & Malkus 1988; Malkus & Smith 1989; 
Smith 1991). 

Given a functional of the flow, the essential idea is then to seek an extreme of 
this quantity over a manifold of vector fields which satisfy only a reduced number of 
constraints implied by the complete set of equations. Since the realized solutions are 
contained within this manifold, the deduced extreme then acts to bound the observed 
values. The resultant bound gives a completely rigorous characterization of the 
turbulent flow. However, its ‘closeness’ to the realized values and hence utility cannot 
be assessed except through direct comparison with experimental measurements. In 
principle, this bound can be improved by incorporating further information from the 
governing equations in the form of additional constraints until ultimately the set of 
vector fields must be the solution set and the bound is attained. In practice, however, 
the variational problems which arise soon approach the complexity of the full system 
as constraints are added. The hope then is that the upper bound and the optimizing 
vector field may start to reflect features of the true turbulent solution before this 
point is reached. 

Formal upper-bound theory has its origins in the work of Howard (1963) who 
developed the initial ideas of Malkus (1954) on turbulent convection. Howard 
formulated and solved the first variational problem to maximize the convective heat 
transport possible across a layer of fluid heated from below subject to the two 
dissipation rate integrals of the basic Boussinesq equations. Further developments 
followed, most notably through incorporating the continuity constraint into the 
convection problem (Busse 1969a) together with the subsequent application of the 
theory to turbulent shear flow (Busse 1969b, 1970, 1978), and are still continuing 
(Soward 1980; Howard 1990; Worthing 1995; Kerswell & Soward 1996). 

Precessing systems represent an especially challenging and novel application of 
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upper-bound methods owing to the boundedness of the fluid and the inherent lack 
of symmetry of the problem. In particular, the techniques developed by Howard and 
Busse cannot be applied directly to the oblate spheroidal case but are instead used 
to advantage in a closely related cylindrical system. Nevertheless, two rigorous upper 
bounds on the rate of energy dissipation are derived in 32 for the oblate spheroidal 
system using very simple ideas from Howard (1963) and a new ‘background’ method 
recently introduced by Doering & Constantin (1992, 1994, 1996) and Constantin & 
Doering (1995). Since it is unknown how ‘good’ these bounds are, their analogues are 
derived in $3 for the case of a long precessing cylinder for which comparison with the 
powerful techniques of Howard and Busse is available. For the geophysicist interested 
in the Earth’s precession, the technical development in $3 may be skipped with no 
great loss. For the applied mathematician, however, this does represent an interesting 
new application of the ingenious multiple boundary layer techniques pioneered by 
Busse. Lastly in $4, the upper-bound results are discussed in the light of experimental 
data and some final conclusions are drawn. 

2. Bounds for a precessing oblate spheroid 
Consider a fluid-filled spheroid of oblateness q spinning at an angular velocity oz 

about its axis of symmetry which itself is rotating at R in inertial space. In the 
precessing frame, the equations are 

(2.1) 
au 
- + 2 R  x u + u . V u + V p  = EV’u, 
iit 

7 -  

(2.3) 

where the equatorial radius of the spheroid R, the fluid density p and the basic spin 
rate o have been used to non-dimensionalize the system. The Ekman number E is 
v /wR2 with v the kinematic viscosity, and p = P - ;/Rxvl’ is a modified version of 
the pressure P .  Written in this way, the underlying spin of the fluid only appears in 
the tangential velocity boundary condition. As a result, it is better to work with the 
velocity relative to the spinning container, u* = c1 - k x r ,  where now the boundary 
conditions are homogeneous and the momentum equation (2.1) becomes 

(d ,  + $ 4 )  U* + 2(R + k ) x u *  + U* * Vu‘ + Vp* - EV2u* = (kxR)xr. (2.4) 

Here a$ = 8, - k x so that c’, does not act on unit base vectors and p* = P - f I(R + 
k)xr12. The forcing term on the right of (2.4) has become known as the Poincare 
force (Malkus 1968) and acts to drive the flow away from the uniformly spinning 
dissipation-free state that would otherwise be realized. 

h 

= kxj+v, ?l/ : r2 + yz’ = xz + y‘ + > = 1, 
c- 

h 

A 

h 

2.1. Stokes upper bound 
It is straightforward to derive global power and torque relations. Taking (u”. (2.4)), 
where ( ) = [dV, and assuming a statistically steady state, gives the balance 
between the total viscous dissipation rate and the power input 

9 := E(IVu*I’) = z * R x ( r X u * )  (2.5) 
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(no work is done in precessing the underlying flow z x v ) .  An associated torque balance 
in the k-direction is available via (k - vx(2.4)) as 

(2.6) 

where 9 := ( vxu)  is the total angular momentum of the fluid. Equation (2.6) is 
a statement that the working precessional torque component exerted on the fluid by 
the boundary is viscously transmitted through the fluid. Modulo the spin rate (which 
is 1 in our non-dimensional units), this torque component equates to the dissipation 
rate within the fluid. Therefore, we can search for an upper bound on the energy 
dissipation indirectly by maximizing this torque component in the same way that 
bounding the heat flux leads to an estimate for the largest dissipation rate in a 
convecting layer of fluid (Howard 1963). 

On the face of it, there are two integral relations, the continuity equation and 
non-slip boundary conditions with which to constrain velocity fields competing to 
maximize k - Dx(vxu*).  Unfortunately it is not possible to utilize the torque relation 
(2.6) because the viscous torque involves normal derivatives of tangential velocity 
components at the boundary which are unrestrained by the non-slip boundary con- 
ditions. Instead, the simplest extremal problem for the torque is to maximize the 
homogeneous functional 

,-. 
E ( ~ - v x V ~ U * )  = (Z.VX(~RXU*)) = ~ . D x ( ~ x u * )  = k . D ~ x ,  

subject to V - u = 0 and v = 0 on dVt .  The non-slip boundary restriction is crucial: 
relaxing it in favour of just a vanishing normal velocity component admits the 
inviscid PoincarC solution (Poincark 1910) for which the dissipation is zero. It is 
straightforward to demonstrate that F is bounded above so that the maximization 
problem is well posed. Using the Schwarz inequality, 

A h  A 

where (I(kxf2)xr12) = $ 7 ~  c(l + c2) for a spheroid x2 + y 2  + z2/c2 = 1 with D = 2. 
(The component of the precession vector D parallel to the spin axis is dynamically 
unimportant acting only to renormalize the basic spin rate. As a result in this paper 
we take G = E throughout.) Bounding the ratio 2 = (v2)/(lVv12) is a familiar situation 
in energy stability theory (Serrin 1959; Joseph 1976) from which (Payne & Weinberger 
1963) we can borrow the result that 

A,,J 8~ : r2 + r]z2 = 11 < A,,,[~v : r2 = 11 = (4.4934)p2, (2.9) 

leading to the (rough) upper bound 

(2.10) F < 4.15 x 1OP2c(l + c2)-. 

This, of course, can be improved by solving the associated Euler-Lagrange problem : 

sz2 
E 

r, A -  

(kxD2)xv - Vp + -FV2v = 0, sz2 (2.11) 

I The functional F depends only on the ‘shape’ of the velocity field and hence can be made equal 
to the torque by allowing (2.5) to determine the velocity amplitude. 
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subject to 
h A  

( k x f 2 - r ~ ~ )  = 1, 
v - v  = 0, 
v = OI,.v. 

The optimizing velocity field is easily found to be 

giving now the best bound to (2.7) as 

167cc5 B’ 
105(4c4 + 3c’ + 3) E’ Fm,, = 

339 

(2.12) 

(2.13) 

(2.14) 

It is worth remarking that the solution (2.13) has (k^.rxV’v)  = $k^xr-(iZ.V)udS = 0 
violating the torque constraint (2.6). However, this is of no consequence because we 
may adjust the torque by adding a discontinuity in iZ - V V ~  to v at the boundary with 
no penalty to F .  

Actually, the optimal problem (2.11) and (2.12) is none other than a Stokes problem 
in the sense that all the inertial terms have been dropped from (2.4) (u’ = Fv/SZ, p’ = 
Bp). This is presumably the Stokes problem solved by Busse in the spherical case 
according to Vanyo (e.g. 1991, equation [l l])  who quotes a dissipation which is 
exactly F,,,, for c = 1. Retention of the Poincare ‘forcing’ term means that that there 
is no accompanying minimum dissipation theorem associated with this flow. Rather 
curiously, we have established precisely the opposite ~ this Stokes flow maximizes the 
dissipation. Unfortunately, the Stokes problem, 

V p  = EV’V, (2.15) 

v - v  = 0, 

v = kxvl , ,v ,  

is not particularly useful, admitting the rigid rotation solution u = ZXY and hence 
supplying only a trivial lower bound on the dissipation rate. 

2.2. Hydromagnetic precession 
The result (2.14) may be used to derive a simple upper bound on the Ohmic dissipation 
rate possible in an electrically conducting fluid undergoing forced precession. The 
hydromagnetic analogue of the momentum equation (2.4) is 

(?( + ?@) u*-t2 ( Q f k ^ ) ~ u * + u * * V u * f H~(V~H)+Vp*-EV~u* = (ZXQ)XV (2.16) 

where the magnetic field B = ~ o R ( p / p ) ’ / ~  H ( p  is density and ,u the magnetic perme- 
ability), and the induction equation is 

__ = V X ( U * X H )  + E,V’H 
i’H 
?t 

(2.17) 

where E,  is the magnetic Ekman number. These yield two power integrals for a 
statistically steady state: 

(2.18) 
(2.19) 

E(IVu*I2) = (u* * (~^xQ)xu) - (u* - H x ( V X H ) ) ,  
E,(IV x Hi?) = (u* - H x ( V x H ) ) ,  
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with their sum describing the total power balance. The upper bound Fmu, on the 
torque still acts to constrain the viscous dissipation although, with Ohmic dissipation 
to accommodate, it becomes less sharp. We can bound the Ohmic dissipation rate 
quite simply by considering the homogeneous functional 

By choosing the amplitudes of v and 2 to satisfy each of the power relations, D 
is then precisely the Ohmic dissipation rate (Kennett 1974 has previously used this 
technique to bound Ohmic dissipation in convectively driven flows: see also Proctor 
1979). Defining 

E m ( l v v 1 2 ) 1 ’ 2 ( 1 v  x HI2) 
(v - X X ( V X X ) )  ’ a =  

simplifies the functional to 

(v - ( 2 x a ) x r )  
( IVv 1’) l’* 

D =  a - Ea2 (2.21) 

Using (2.14), and maximizing over a leads to the upper bound on the Ohmic dissipation 
rate 

(2.22) E m ( I V  x HI2) < i F m u x .  

2.3. Possible extensions 
In convection (Howard 1963; Busse 1969~)  and shear flow (Busse 1970, 1978; Howard 
1972) optimization problems, the standard way to proceed is to identify a spatial 
averaging procedure under which the dependent fields may plausibly be assumed 
statistically steady. Invariably, these mean fields are assumed unidimensional and, in 
the case of velocity, unidirectional so that the averaging procedure merely integrates 
over the other spatial variables. The fields, and subsequently the governing equations, 
are then decomposed into mean and fluctuating components, with the result that 
a tighter optimization problem can be produced. Such an approach is strongly 
dependent on the boundary conditions, however, for its success. In our precessing 
spheroid, experimental observations suggest that the mean flow consists of a coherent 
rotation of the fluid about a spin axis. For low precession rates, this spin axis is 
close to the spheroid’s axis of symmetry but appears to move into rough alignment 
with the precession axis at higher ‘turbulent’ precession rates. Looking either to 
characterize the spin-down of the flow about the spheroid’s axis or the spin-up about 
the precession axis necessitates a cylindrical averaging procedure incompatible with 
the oblate spheroidal boundary. 

Nevertheless, the spirit of this technique does suggest a way forward. Rather than 
a reformulation in terms of means and fluctuations, the expected symmetries of a 
statistically steady flow component may be imposed as additional constraints. Given 
the underlying rotational nature of the flow, a reasonable starting assumption is to 
speculate that the total angular momentum, 

(2.23) 

of an arbitrary, infinitesimally thin, spheroidal shell of fluid is statistically steady. 
The boundary conditions dictate that the direction of this angular momentum must 



The energy ilissipation in turbulent precession 34 1 

be orientated with k ,  the container’s spin axis, at the boundary R = 1. However, as 
R decreases away from 1, the contribution to the torque integral is maximal when 
f adjusts to align with E x 6  rather than 6. (Presumably, the angular momentum 
axis strives to be somewhere in between with the component parallel to 6 probably 
larger to create the impression of alignment with the precession axis. This component, 
unfortunately, does not contribute to the torque and therefore is absent from our 
upper-bound problem.) Adding this plausible constraint to the problem of maximizing 
(2.7) leads to the Euler- Lagrange equation 

A 

( 1 + p ) ( k  x R  1 X I ’  + 2pEV’u + vp + (1 x r )  x 2(Z + Q) - U,V(IZ xr), - u - VIZ XY - EV21 XI‘ = 0 
(2.24) 

v - u  = 0, ( i x f 2 . r x u )  = E(lVUl’), (2.25) 
with constraints 

A 

I ’x {~(Q + k ) x u + u . V u -  EV’u- (ZXQ)XV) dS = 0, VR E (0,1], 
- = p  ?/ . 
? t  . r’+,l-’=R? 

(2.26) 
and boundary conditions 

1 = u = O(r ’+ ,+ l .  (2.27) 
The Lagrange scalar multipliers p and p correspond to the constraints (2.25), and the 
vector multiplier I ,  which is a function of the oblate spheroidal radius R = (r2+qz2))’”, 
to the angular momentum constraint (2.26). As it stands this is a formidable nonlinear 
problem for (u,A,p,p) which may only be simplified slightly by imposing just one 
component of the angular momentum constraint. The most important component is 
that parallel to k x Q  since this retains the Poincare forcing term. Unfortunately, the 
velocity field (2.13) remains a solution despite the constraint i? ! (zxQ - P) = 0 and so 
the upper bound (2.14) is unchanged. This degeneracy rather discourages an attack 
on the full problem (2.24) -(2.27). 

Other approaches to generate additional constraints involve either taking higher 
moments or suitable projections of the governing equations. The former strategy 
inevitably suffers from a dearth of boundary conditions and leads to new nonlinearities 
in the Euler Lagrange equations which are as yet untreatable analytically. The latter 
procedure is eventually equivalent to confining attention to the laminar solutions of 
the full steady governing equations, and thus cannot hope to capture the turbulent 
features of the flow. 

An alternative functional-analytic method for obtaining upper bounds has recently 
been developed by Doering & Constantin (1992, 1994, 1996) and Constantin & 
Doering (1995) following on from the earlier work of Hopf (1941). The strength 
of this method is that it does not require an averaging procedure to be defined 
even though a distinction is drawn between ‘background’ and fluctuating velocity 
components. As a result, it is generally more applicable than the Howard/Busse 
method but is not so powerful since less information is extracted from the governing 
equations (see Kerswell 1996). The precessing oblate spheroid represents just one such 
situation where only this tool can be used. 

2.4. The background technique 
Consider the fluid velocity u(r,r) ,  relative to the precessing frame, decomposed as 
u = li + u into a steady background flow U(u)  where 

V -  U = 0, U = kxr lTV,  (2.28) 
,-. 
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and an incompressible fluctuation field U(F, t )  which then satisfies homogeneous bound- 
ary conditions. Inserting this decomposition into the Navier-Stokes equation, (2.1), 
the kinetic energy of the fluctuation u evolves according to 

a 
- ( ; u 2 ) + ( u * [ 2 5 2 ~ U + U *  V U + u - V U ] )  =-E(VV :VU)-E(IVu12)  (2.29) 

where Vu : V U  = Ci,, U , , ~ U ~ , ~ .  This cross-term may be eliminated via use of the 
identity 

and the kinetic energy derivative dropped for a statistically steady flow to give 

E(IVu12) = E(/VUI2)  - ~ ( v - ~ Q x U + V *  U . V U + U . V U . U +  ;EIVvl2). 

at 

IVU12 = IVU12 + 2vu : V U  + IVV12 

(2.30) 

Formally, the total dissipation 

but as 9 >> O ( E ) ,  we can take 9 as effectively equal to E(/VuI2). Now, if a trial 
background field U can be chosen, subject to the conditions (2.28), such that 

inf g ( v , U ) =  ( U ~ ~ ~ ~ X U + V ~ U ~ V U + ~ ~ V U ~ V + ~ E ~ V V ~ ~ )  (2.32) 
va=o 

V=Oon21/ 

exists, then (2.30) furnishes an upper bound on the total dissipation rate E(lVu12) - 
Doering & Constantin (1992, 1994) refer to the restriction imposed by the existence 
of (2.32) as the ‘spectral constraint’ on U .  The technical challenge is then to 
manufacture a functional form for U which satisfies the spectral constraint and 
optimizes the upper-bound estimate available using (2.30). If V solves the associated 
Euler-Lagrange equations for (2.32),  then 

2(VU),7y, * V + V P  - EV2 V = - 2 5 2 ~  U - U * V U ,  (2.33) 

and the upper bound given by (2.30) can then be written as 

E ( / V U ~ ~ )  < E((VU12) + ( U - V V  * U )  - ( V  - 2 R x U ) .  (2.34) 

This is the rotational analogue of Doering & Constantin’s (1994) equation (2.28). 

2.5. An upper bound 
For the spheroid r2  + yz2 = 1 we define the change of variables 

m = r (1 + y c o s 2 ~ ) ” ~ ,  9 = e 
in the meridional plane and choose a trial background U = f ( m ) z x r  with 

f ( m )  = ZiJ 1 /a (2.35) 

where the boundary layer thickness 6 is selected to ensure that the spectral constraint 
is satisfied. This simple choice for f appears close to the optimal one-dimensional 
profile: see Appendix A. In the absence of any constraint on the amplitude of u, 9 
will have a global minimum if and only if 2(VU),, - EV2 is a positive semi-definite 
operator. This reduces to requiring 

@(lVVI*) 3 I(V.VU.U)/ = I ( ( U 4 X Y ) ( U ’ V f ) ) l .  (2.36) 
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We can derive a sufficient condition on 6 for this to hold using simple functional 
arguments. Application of the fundamental theorem of calculus to the right-hand-side 
integral, 

I { ( u . ~ x r ) ( u ~ V f ) /  d ( m ~ ~ m n ‘ ] ~ 4 , , ~ d m ’ ~ ” m ’ ] o , , ~ d n ’ ) ,  dm (2.37) 

and then the Schwarz inequality, gives 

q sin 28 
+ + 4) qcosQsin8 

1 + q cos2 8 
1 

1 +qcos26) 

(2.38) 

where we have concentrated upon the case of oblateness q 3 0 in reaching the last 
1ine.t Choosing (1 + q/ (2(  1 + q)’ /*)6 = 6” < E guarantees that the viscous dissipation 
overcomes the quadratic driving term and therefore that 9 ( u ,  U )  can be bounded 
from below. To estimate this minimum, we need to bound the two linear terms in 9 
which is accomplished quite simply as follows: 

1 

6 2Q 1 mfda  ( b z , m  I ) 

d 2Q6 (12)1/2([vu/2)1’2, (2.39) 

and similarly 

We then have 
I ( v  * U.VU)I = I(sf2v,)] ,< f6(12)1’2(jVul*)1’2. (2.40) 

so that 9 is bounded below by an 0(S2/E) quantity provided that 6’ < E. The 
dissipation associated with the background flow is 

2 2 112 
[ I -  [1+(2q+q  lx ] dx+O(E). 

‘ (1 - x2) [ 1 + (2q + q2)x2] l’? 
E(IVUI2) = 1 

(1 + qx2)3  2 11 + qx21 
(2.42) 

Clearly a slight oblateness only perturbs the spherical result and henceforth we set 
q = 0. Taking 6 = E means that in the rapid rotation limit where E << 1 (2.30) 
essentially furnishes the upper bound 

4n 
E(lVuI2) 6 -. 

3 
(2.43) 

This upper bound may be tightened considerably by taking full account of the 
fluid’s incompressibility in resolving the spectral condition beyond the comparatively 

t For prolateness, replace 1 + q / (2 (  1 + q)’ /*)  by 1/(1 + q ) .  
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conservative inequality (2.38). Improvement is achieved by relaxing the constraint on 
the size of 6 through explicitly maximizing 

(2.44) 

over all incompressible velocity fields v which vanish at the boundary. It is sufficient 
to look for an axisymmetric solution 

v = vx  [ y ( r ,  ~131 + u(r ,  o>& (2.45) 

to the associated Euler-Lagrange problem 

( Z X ~ ) ( V  * Vf) + (U * 2Xr)Vf + Vp + E F V 2 v  = 0, (2.46) 

V - v = 0, with v = O l a v .  
Taking 3 0 (2.46) and 3 - Vx(2.46) leads to the equations 

df  a 
dr ao - - (y sin 0) + EF&B2u = 0, 

--(u df  a sin 0) + E 9 g 4 y  = 0, 
dr d0 

(2.47) 

(2.48) 

where 
1 

( r  sin o ) ~  ’ 
to be solved subject to the boundary conditions 

01 

9 2  = v2 - 

r = l .  (2.49) 

This problem bears some resemblence to that produced by a linear stability analysis of 
the flow in the narrow gap between two concentric rotating spheres (Soward & Jones 
1983). As a result, we can expect the maximal flow to consist of O(1)-aspect-ratio 
Taylor vortices concentrated at the equator where the shear of the ‘underlying’ state is 
largest. A full numerical solution appears to confirm this picture at moderately small 
E (see Appendix B) justifying use of a WKB analysis to find 9 in the asymptotic 
limit. Therefore we seek a solution of the form 

aY y = - = u 
d r  

u(r,  Q) = C(r)cos k(A)dA, y(r ,  0) = @ ( r )  sin k(A)dA (2.50) 

where i = 0 - n/2 and u has been chosen symmetric about the equator without loss 
of generality. Equations (2.47) and (2.48) then become 

df  
dr 

-6 --k cos A @ ( r )  = ~ 

2 

6-kcosAE(r) df  = __ E F  ( 6 2 s  - :) i j j( t-1 dr 6 

to be solved subject to 

(2.51) 

(2.52) 

(2.53) 

This eigenvalue problem for 9 = F(A, k ;  6, E )  is much more straightforward than the 
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corresponding linear stability eigenproblem for the Taylor number T = T(2, k ,  o[%, k ] )  
tackled by Soward & Jones (1983). In that case. since there is also a dependent 
frequency u = o(i, k )  for the neutral mode, the search for minimum Taylor number T 
had to be broadened to look for stationary points where Tk = T,. = 0 over complex 
k and i to ensure the correct asymptotic behaviour of the solution. This, of course, is 
subtlety different from just finding the minimum of T over real k and i; a distinction 
which proves crucial for the linear stability analysis of flow between two concentric 
spheres. However, here no such subtleties exist since our problem is of the ‘exchange 
of stabilities’ type (u = 0, Chandrasekhar 1961) and so .F;k = -9, = 0 is achieved at 
the real values /z = 0 and k e f0.404 for 6 < Numerical calculations down to 
6 = lop4 (see Appendix B) indicate the asymptotic result 

(2.54) 

The spectral constraint, 9 < 1, is then still satisfied by 6 = 9.7E and we have the 
improved upper bound 

E(jVuj2) < 0.137~ = 0.43 (2.55) 
in non-dimensional units. 

2.6. Improvements 
Clearly a more judicious choice of the background field could improve the bound 
(2.55). For example, admitting the latitudinally dependent field U = f ( r ,  O)k^xr would 
allow the background shear to be reduced away from the equator. This should leave 
the spectral constraint essentially unchanged but reduce the dissipation associated 
with the background field. However, such an improvement can only decrease the 
numerical coefficient rather than adjusting the scaling-law dependence on E and Q. 
The only hope to achieve the latter must be to incorporate additional constraints, the 
most obvious of which is the torque constraint used in $2.1. 

Unfortunately, this has no effect on the spectral constraint because it can only 
constrain the asymmetric part of the motion. This highlights an interesting feature of 
this problem. Experimental observations confirm that the fluid’s precessional response 
is essentially partitioned into an axisymmetric component forced by the spinning 
boundary and an asymmetric spin-over el4 component driven by the Poincare force. 
For low ‘laminar’ precession rates, the flow is predominantly axisymmetric but the 
dissipation is almost entirely due to the small spin-over motion excited. At higher 
‘turbulent’ precession rates when the flow has spun over completely, the axisymmetric 
motions are now largely confined to a turbulent boundary layer and would seem to 
dominate the dissipation. The bound developed here as (2.55) focuses on this latter 
‘turbulent’ scenario whereas the torque bound of 52.1 concentrates on the asymmetric 
Poincare driving. In this way, the two upper bounds are in effect mutually exclusive, 
serving to bound either the axisymmetric or asymmetric dissipation, but nevertheless 
both serve individually as rigorous results for the total dissipation. 

2.1. Comments 
In this section we have produced two rigorous upper bounds on the rate of energy 
dissipation possible in a precessing oblate spheroid. The simple ‘Stokes’ result, 
(2.14), which varies quadratically with the precession rate, gives the tighter bound 
when 52 << E’/‘. Intriguingly, the ‘background’ upper bound, which is independent 
of both the precession rate and viscosity, takes over when B = O(E’ /*) ,  precisely 
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when the laminar Poincare flow is thought become linearly unstable (Kerswell 1993). 
Malkus’s (1968, figure 4) experimental observations appear to corroborate this picture 
remarkably well. At first glance, his graph appears roughly to indicate a quadratic-like 
growth of the torque (and hence dissipation) with increasing precession rate until a 
jump is made at SZ = O(E1i2) to a saturated state which is insensitive to any further 
increases in the precession rate. 

A more in-depth discussion of the experimental data available, however, is delayed 
until §4. Next, in $3, our purpose is rather to assess theoretically how ‘good’ these 
bounds are likely to be through their use in a precessing cylindrical system where 
comparison with results derived using the more powerful Howard/Busse formalism 
is possible. 

3. Bounds for a long precessing cylinder 
Here we consider a long fluid-filled cylinder of unit radius spinning about its 

axis with an angular velocity i which itself is rotating at D in inertial space. As 
mentioned earlier, the component of the precession vector 0 parallel to the spin axis 
is dynamically unimportant, serving only to renormalize the basic spin rate. As a 
result and without loss of generality, we take G = 2. In the precessing frame and 
non-dimensionalizing by the radius and spin rate, the governing equations are as 
before, (2.1)-(2.2). By taking the cylinder as very long, the infinite-length limit can 
be assumed so that the boundary i3V is just s = 1 in cylindrical coordinates (s, 4, z ) .  
Essentially, this is only a useful approximation if the resulting flow is found to be 
periodic in the axial coordinate and there is no net mass flux along the axis. With 
these two criteria satisfied as they are here, the end regions of a finite but long cylinder 
are subdominant to the main interior. The problem for u and p is then 

(3.1) 

v . u = o ,  (3.2) 

= kxr lav ,  av : s = I. (3.3) 

l3U 
- + 252 X U  + u * Vu + V p  = EV2u, 
at 

h 

Again working with u* = u - i x r  to homogenize the boundary condition, we need 
also to remove a centrifugal-type term from the Poincari! force, leaving it independent 
of the axial coordinate, to rewrite the momentum equation as 

(a, + J4) u* + 2(52 + ; ) X U *  + u* - v u a  + vp** - E V ~ ~ *  = - 2 5 2 ~ ( i x r )  (3.4) 
h 

where p*’ = p - ; lkxrJ2 .  

3.1. Stokes upper bound 
The power balance, (u* - (3.4)), is 

E ( I V ~ * ( ~ )  = ( E - ~ x ( ~ s L x ~ * ) )  = i . a x ( r x u * )  (3.5) 

where ( 
ceeding as before, we can look to maximize the homogeneous functional 

) represents the average over the infinite cylindrical volume enclosed. Pro- 

Q2 [(Z * rx (2Gxu) ) ]2  
E (lVVl2) 

F(u)  = - 
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subject to V ’ u = 0 and u = 0 on i3V to derive an upper bound on the dissipation 
rate. The Euler-Lagrange equations are 

E ~ ~ x ( E x ~ )  - Vp + -FV2v = 0, (3.7) 
Q2 

subject to 

( u  * 2 6 x ( i x u ) )  = 1, 
v.u = 0, 

= O / ? V ,  

for which the optimizing velocity field is easily found to be 
6 h 

u =  -s(l-s2)c0s(bk, p = o  (3.9) 
TI  

giving the maximum 

(3.10) 

3.2. The background technique 
As before we consider the full velocity field u(u,r) in the precessing frame to be 
composed of a steady background field U ( v )  which satisfies 

A v * u = 0, U = kxul,,v 

and an incompressible fluctuating field v(v ,  t)  which obeys homogeneous boundary 
conditions. Then, under statistically steady flow conditions 

E((VuI2)  = E(/VU12) - 2 q u ,  U )  (3.11) 

where 
g(v, U )  = ( V  * 2 R x  U + v * U * V U  + u - V U  * u + ;EIVvl2). (3.12) 

Choosing the background field U = f ( s ) i x v  with f(s) = s1I6 analogous to our 
spheroidal choice in 42.5 means that the results derived there can be reused here. In 
particular, the spectral condition which ensures that 9 is bounded below is exactly as 
before in the asymptotic limit of E << 1; 6 < E/0.103. Additionally, it follows that 
9m,, = O ( S 2 / E )  is negligible compared to the dissipation in the background field so 
that (3.1 I )  effectively furnishes the upper bound 

E(jVul*) < E((VUI2)  = 0.10371. = 0.32. (3.13) 

3.3. Howard/Busse mean jield ,formulation 
In the axially unbounded cylinder limit, a two-dimensional averaging procedure so 
central to the Howard/Busse approach is naturally defined for a given radius s by 
integration over the infinite cylinder at this radius. Armed with this, we make the 
very plausible and standard assumption that the averages of the velocity components 
and their products over cylinders of constant s (denoted by an overbar) exist and 
are independent of time for a statistically steady turbulent flow. We then have the 
mean-fluctuation decomposition 

h h 

u* = u - k x v  = V ( s ) 4  + u’(x, t )  (3.14) 
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where u’ -% = u ’ * $  = u ’ - Z  = 0. The mean momentum equation is obtained via 
3 - (3.4) as 

~ 

~ A -  

and the fluctuation power balance, (u’ * (3.4)), is 

( : V q ) + ( s G $  (:))+E(lVu’12) = ( - 2 Q q )  (3.16) 

under the assumption of statistical steadiness and where 

- A = lim i / ) ” d z c d d ,  A, 
d+m 4 ~ d  

2n 1 1 

(A)=lim!/”dzL d-m 2d -d d Q 1  sdsA = 2 n L  sdsx. 

For completeness, we note that another mean momentum statement can be made via 
2-  (3.4) as 

although in what follows, this is trivially satisfied and is not considered further. 
The formal upper-bound problem to be tackled is then to maximize 9 = (-2Qxui), 

the work done by the Poincare force, subject to the constraints (3.15), (3.16), V-u’ = 0 
and boundary conditions u’( 1,4, z, t )  = 0, V (  1) = 0. The global constraint linking the 
total dissipation, the stress at the boundary and the work done by the Poincare force 
is recovered simply by taking (V  x (3.15)) + (3.16) and (s x (3.15)), 

9 = E((Vu”l2) = E(IVVI2) + E(IVu’I2) = 27tE.s- 
is (:) Is=,. 

In unidirectional shear flow problems (Busse 1970), an expression for the mean shear 
term (here s(d/ds)( V / s ) )  can be found in terms of the boundary stress and fluctuation 
Reynolds stress by integrating the mean momentum equation (3.15) once. This is 
then used to eliminate the mean flow completely from the fluctuation power balance, 
(3.16), and thereby the full optimization problem. Here, the Coriolis term prevents 
any such initial simplification and so we deal with the full Lagrangian 

S 

252- I d  __ 
--xu’, + - -(s2u/u‘ ) - E - (2,upV * u’),  (3.18) 

s * s2ds 

where ,u, p and A(s) are Lagrange multipliers. The Euler-Lagrange equations for u’ 
and V are then 

S +2pVp+2pEV2u’ = 0 (3.19) 

and 

(3.20) 
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to be solved subject to 

(3.21) 

v - u ’  = 0, u’( l ,@,z , t )  = 0, V(1) = A(1) = 0. (3.23) 
Subtracting (3.20) from p x (3.22) gives 

(v? - (3.24) 

which, together with the condition that pV - i = 0 at s = 1 and remains regular 
otherwise, means that 3, = pV.  Furthermore, it is clear from the structure of 9 that 
u’ must have the form 

u’ = W ( s )  cos q!) i; + U(s, q!), z ,  t).  (3.25) 
With this the optimization problem is now to solve 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

with 
V . U = O ,  2;(1,4,z,t)=O, W ( 1 ) =  V ( l ) = O .  (3.30) 

The key equation of this set is the mean momentum balance (3.28). This describes 
a three-way balance between the Poincare forcing, the fluctuation Reynolds stress 
and the viscous stress in the mean flow. The first of these will only contribute in 
the interior away from the boundary where W must vanish, whereas the third will 
only be significant close to the boundary where large gradients can develop. The 
fluctuation Reynolds stress term then acts as an intermediary to link these interior 
and boundary layer regimes. Without this flexibility, the viscous boundary stress and 
hence the total dissipation rate will be much reduced owing to the restriction imposed 
by directly matching the viscous stresses with the Poincare forcing. As an illustration, 
just such a scenario occurs at p = 1 when a solution with vanishing fluctuation field 
u can be found. In this degenerate case, the system may be reduced to 
- 

2(s + V )  = f2 (v? - $) w, (3.31) 

(3.32) 

with f = ( E / Q ) ’ / 2 ,  and V (  1) = W (  1) = 0. The solution for f << 1 has the boundary 
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layer character, 

v = -s + e-5 cos 5, 
w = -,jie-C sin 5 ,  

in terms of the stretched variable 
1 - s  l = -  
2 1 1 4 ~  

and the corresponding dissipation 

(3.33) 
(3.34) 

9 = 2 3 / 4 7 1 ( ~ ~ ) 1 / 2  + o(E).  (3.35) 

While this is significantly larger than the O(D2E' /2)  laminar dissipation, it is also 
considerably smaller than the 'background' result independent of E or D derived 
above. 

For p # 1, we can think in terms of the interior balance 

together with the boundary layer balance 

and global balance 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

ds 

where the interior flows Ui and Vi match smoothly onto the boundary layer flows 
ub and vb which then both vanish at s = 1. The boundary layer part W, of W is 
<< O( Wi) as well as playing no significant role in either equation (3.40) or (3.41). As 
a result, we can apply the boundary condition Wi(l) = 0 and the boundary layer 
version of equation (3.36) which defines Wb can be neglected (see Appendix C for 
justification). 

- 

Integrating equation (3.40) once leads to 

The boundary layer problem (3.39) and (3.42) together with given interior boundary 
conditions is then exactly equivalent to finding the stationary values of the boundary 
layer energy dissipation 

(3.43) 
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for fixed I' and V-uh  = 0. This variational problem is closely related to that formulated 
and solved by Busse (1970) in his upper bounding of the dissipation in turbulent 
planar Couette flow. There the problem was to maximize the dissipation functional 
(3.43) across the whole planar extent of the fluid. Following his earlier success in 
bounding the heat transport i n  turbulent convection (Busse 19694, Busse constructed 
an ingenious multi-x solution to the variational problem based upon a series of 
interwoven boundary layers each corresponding to a single-x spanwise wavelength. 
Here. we expect a similar form of solution to be relevant in our boundary layer 
regime but now this must be coupled to an active interior flow driven by the Poincare 
force. 

3.3.1. Boundulvy layer regime 
Motivated by experimental observations (Townsend 1956), Busse (1970) made the 

assumption that the maximal fluctuating velocity solution to his Couette flow varia- 
tional problem would be two-dimensional, consisting of purely streamwise rolls. In 
the present context, this is an assumption that the fluctuating field will be axisymmet- 
ric (Taylor-Couette rolls) which we subsequently adopt through the streamfunction 
represen tation 

(3.44) 

The equations to be solved in the boundary layer regime (where s = 1) are then 

(3.45) 
(3.46) 

with L' = y5 = y z  = 01,=,. As mentioned earlier, these are the Euler-Lagrange 
equations for finding the stationary value(s) of the boundary layer dissipation 

(3.47) 

given that I ' .  the total dissipation rate (modulo 2n), is a constant and interior 
boundary conditions on c, ip, and tp:. Clearly, C2hl only has a global minimum 
which we can use to identify a solution to the equations (3.45) and (3.46). (This 
is not to say that maximizing the total dissipation is achieved by minimizing the 
boundary layer contribution but rather that given a prescribed interior flow and fixed 
r ,  the boundary layer solution minimizes its dissipation.) The solution strategy is 
then essentially that of Busse (1969u, 1970). For E << I ,  the mean dissipation term 
dominates unless vy'; = r for most of the boundary region and only then will a 
minimum occur when all three terms of (3.47) have the same order. The fluctuation 
dissipation will be minimized when the velocity gradients normal and tangential to 
the boundary are comparable. This suggests a sequence of boundary layers whose 
purpose is to gradually relax the length scales from their initial value at the boundary 
over which Ti:; + 0 to a more moderate interior value. 

We therefore consider the multi-r solution 
N h' 

~y.s,z) = C -Jz~',~(.s)cosct,~z, y ( s , z )  = C J?iy,(s)sina,,z, (3.48) 

consisting of N harmonics interwoven over N boundary layers. Formally, each har- 
monic occupies a triple deck of boundary layers where normal s-gradients dominate 

n = l  f I = l  
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in the innermost layer, tangential z-gradients dominate in the outermost layer and 
both are comparable in the intermediary layer. Fortunately, this middle layer makes 
no significant contribution to the optimization problem and therefore is not con- 
sidered. Thus, the nth harmonic is assumed to exist only in the nth and ( n  - 1)th 
boundary layers. In the former, inner, layer it grows from the boundary values 
v, = y, = dy, /ds  = 0 over a length scale of Ern .  In the ( n  - 1)th layer where the next 
harmonic u,-~ and yn-l is growing, the nth harmonic u, and tp, decreases to zero over 
the length scale Ern-'. The interaction between two overlapping harmonics in a given 
layer is then designed so that 

on-lYn-1 + vnWn (3.49) 

throughout all but the innermost Nth boundary layer. Mathematically, the motivation 
for this design has already been given in terms of minimizing the mean flow dissipation 
until it is comparable to the fluctuation dissipation. Physically, this boundary layer 
structure may be interpreted as the mechanism by which eddies of different scale 
relieve one another in carrying the transport of momentum (Busse 1970). 

The mathematical description must admit the fact that o and y may have very 
different orders of magnitude despite their product being O ( r  ) throughout. Certainly 
in the inner layer of a harmonic's triple deck where both u and y grow from 0, v must 
quickly become larger than y for the toroidal dissipation to be of the same order as 
the poloidal dissipation. Thus, the nth harmonic is rewritten as 

where the rescaled boundary layer variables are 

Cn = (1 - s)E-'", (3.51) 

the axial wavelengths a, = E-enbn and, most importantly, we let the as yet unknown 
order of the total dissipation with respect to E be a, i.e. 

r = EaT^ with r^ = O(1). (3.52) 

The functional g b l  is then to leading order given by 

(3.53) 

with i j ~ + ~  = G N + ~  = 0. The outer solution of the first harmonic, El and lyl, is in 
the interior region and therefore is not discussed here. The last term of (3.53) is the 
dissipation in the mean flow and by design through (3.49) is supposed concentrated 
in the innermost Nth layer. Hence essentially, this term is just 

(3.54) 
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although we need to retain the full sum to derive the Euler-Lagrange equations. The 
full functional (3.53) will be minimized as a function of the variables r,, p , ,  en and s, 
when the minimum of the E-exponents is a maximum. This occurs when all are made 
equal which essentially means that we have an equipartition of dissipation across the 
layers in the fluctuation field together with the mean flow dissipation in the innermost 
boundary layer. The conditions for this to occur are 

2a - 1 + rN = 1 - 2pN - r N  = 1 - 2pN-1 - rfl-1 = . . . = 1 - 2pl - rl, 
= 1 + 2a + 2pN + 2eN - 3rN = . . . = 1 + 2a + 2pl + 2e1 - 3r1, 
= 1 - 2sN - 2ew + r N - 1  = . . . = 1 - 2s2 - 2ez + r1, 
= 1 + 2a + 2sy - 2eN + TN-1 = . . . = 1 + 2a + 2s2 - 2e2 + rl. (3.55) 

Since both the size of the outermost boundary layer, r l  = a, and the magnitude of 
a%ihl = 0 ( ~ 2 a - I + r r ,  ) will be determined by the coupling to the interior, the solution is 
parameterized by a and cx as follows: 

(3.56) 

2 - a - 2 x  
r, = 2 - 4 - ~ + 1  (1 - 4-"+') + 2, 

4 - 2a - 2% qPN+' - 2 - a - 2 ~ [ ~ - , + ~  2e, = 2 - 4-~+1 2 - ~ - N + I  

To find the transverse (axial) wavelengths and structure within these layers we solve 
the Euler-Lagrange equations associated with minimizing (3.53). In contrast to 
Busse's (1970) formulation, no equations are needed here for GI or G I  since these 
velocity fields are outside the domain of 9 h l .  The equations are 

Gr - Erii-"aV r - bflG,@ll - b,+lG,+ly>,+l u, = 0, 

= 0, 

b ~ + , & + ~  - Ern-'" (f - b,3&, - b,+LI:,+Ii&+l) G;,+I = 0, 

( n  = 1 ) . . . )  N), (3.57) 

( n  = 1,. . . , N - 1) (3.58) 

-3- 1 
i h 

F;II (- 
h 1 A,' 

F;IIuI, + Erll-r' (1 - h,Gll@, - b n + l G n + l @ n + l )  

I 

- 
bn+lZn+l - Ern"'\ (F - b n G n G i i  - b n + l ~ n + ~ ~ n + I )  c n + t  = 0, 

which are, with the associations w, = b,y,, 8, = u,, and ho = r ,  exactly Busse's (1970) 
equations ( 2 2 )  (corrected) and (23) .  

Consider the situation in the first N - 1 layers. Provided that @n+l and i?,+l are 
non-zero, that is we are in the inner part of the nth boundary layer, (3.58) implies 
that 

(3.59) - 
= Ern-'& (f - bnG;,W^n - bn+IGn+1@?1+1) 3 un+1 = bn+l@n+l. 

This may be used to describe the inner regime in which Gn and Gn grow from zero until 
r^ - bnG,,;,W l̂, = hn+lijn+lyn+l x 0. Thereafter (3.59) does not hold but now r^ = bnG,ijjn. 
Resolution of the boundary layer structure is then a case of solving the dual regime 
problem 

(3.60) 

I 

h A 

Q'" - G@ = 0, 
where the variables have been changed to 

G" + GG = 0, 

5 = (b~+lb~l)-"3[,1, G = ( b  t I + l  b2)1'3 n F1'* y,, ,. G = (bn+, /b,1)-1'3 f-1'2 -n7 Z, (3.61) 
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and 
G = Ern-" ( r^  - bnGi,W n̂ - bn+lGn+lh+l) /bi+l (3.62) 

is 1 (66 unspecified) for 0 < < < t* and 66 = 1 (G unspecified) for <* < 5 < co 
(Kerswell & Soward 1996). The boundary conditions are that 6 = 6' = 6 = 0 at 
[ = 0, 52' -+ const as [ + co, together with the matching conditions at < = [ *  that 
0,  0',52,52',2 and 6"' are continuous, 66 = 1 and (66)' = 0. The integral results 

h 

A h  A h  

then follow (Busse 1969b, 1978). 
In the Nth layer where Y N + l  = E N + ,  = 0, the change of variables 

leads to the equations 

52'" - (1 - sz0)O = 0, @ ' I  + (1 - Q 0 ) Q  = 0, (3.65) 

with boundary conditions 52 = 52' = 0 = 0 at < = 0, 0 --+ 0 and 520 + 1 as [ + co. 
This problem was first solved by Howard (1963) in his 'single'+ analysis with the 
results 

With the integral identities (3.63) and (3.66), g b l  may now be reduced to an 
expression in just the axial wavelengths and the two constants P and 0: 

(3.67) 

where the definition 
b4/3 - 0 r^ 2 / 3  (3.68) 

P N+l - 

has been made for convenience. The jump in V across the boundary layers is 
N 00 N 

AV = Ea-l+rn din(? - bnCn@,, - bn+lEn+lY)n+l) = AnV. (3.69) 
n= 1 1 

Use of (3.57), (3.58) and the realization that to leading order r^ x bnGn@,+bn+lEn+l@n+1 
for all but the innermost layer, leads to the expression 

The jump ANV across the innermost layer follows directly from the third integral in 
(3.66), giving the total jump as 
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after use of (3.68). Hence 

355 

(3.71) 

The expression for g b l  is minimized when the axial wavelengths satisfy the recurrence 
relation 

(3.72) 

In contrast to Busse (1970), there is one less equation to solve owing to the interior 
being a separate regime. As a result, the outermost wavelength bl parameterizes the 
solution as follows: 

The boundary regime dissipation is then 

The order of this depends on the outermost boundary layer scaling rl = c1 and a, 
the scaling of the total dissipation, whereas the exact magnitude is determined by the 
outermost axial wavelength hi. The values of these unknowns will be specified by 
coupling to the interior flow. 

3.3.2. Interior regime 

harmonic in the boundary layer regime. As a result, we adopt the representation 
The fluctuating velocity field in the interior matches onto the first (outermost) 

(3.75) 

where yl > 1 for all cases of interest. In fact, the magnitude of Eoli is pivotal in what 
follows so it is worth introducing E = O(Ec1i) = EiP2'I so that 

EN: = cb:. (3.76) 

The leading-order interior equations can then be rewritten as 

(3.77) 

(3.78) 

(3.79) 

(3.80) 
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To allow compatibility with the boundary regime in which v l  and a l y l / s  both emerge 
equal to (r / s ~ ) ' / ~ ,  the solution 

- 
(3.81) at- = q ,  V ,  = - s A V + + b ~ s l n s  

must be chosen to the equations (3.78) and (3.79); recall that A V  is the jump in V 
across the boundary layers, i.e. V (  1)- Vi( 1). With this, we may integrate the remaining 
equations (3.77) and (3.80) for Wi and GI. Matching to the outermost boundary layer 
requires that 51 = al@l/s = (r/s2)'I2 and ($ = 0 at s = 1. The latter condition is 
implicitly satisfied through (3.80) as Wi(1) = 0 so that only the former needs to be 
imposed, thus determining AV as 

w1 - 
S 

(3.82) 

and the solution 

(3.83) 1 Q2 
QWi = -12rs(l - s2)+  ---Eb:{ 3s31ns+s(l - s * ) } ,  12 E 

1 Q2 
48 E 

5; = r s2(3  -2s2)+ ---Eb?s2 (s2 -2s21ns- 1) .  

Notice that the expression for is only positive semi-definite over s E [0,1] if 

The dissipation in the fluctuating field is 

goy w 2zE sds { 2 4 G ; }  = -+b:r 571 - ---(cbl)  71 Q 2  2 2  I '  3 432 E 

(3.84) 

(3.85) 

(3.86) 

and in the forced field Wi, 
E r 2  n Q2 2 2  

Wi2 + 2 C O S ~  4 = 9671- + --(+bl) . (3.87) 
9 , = E 1 2 ~ 4 ~ ~ d s (  T2) Q2 432 E 

The total dissipation is then 

9 = g o r p  + 9 W  + g b l  (3.88) 

where the dissipation associated with W, has been neglected (see Appendix C). The 
character of the dominant balance in (3.88) depends on whether Q 2 / E  is much greater 
or much less than E4-N. 

3.3.3. Supercritical case: Q 2 / E  >> E4-" 

by analogy to known results for a precessing spheroid (Kerswell 1993). Given 
This is the more important case since the laminar flow is unstable when Q = O ( E ' / 2 )  

(3.89) 

there is only one scaling consistent with maximizing the total dissipation B subject 
to the constraint (3.85). In this, the boundary layer dissipation dominates the interior 
dissipation, 

9=%l > > 9 ~ + 9 ~ ~  o a = 2 a - 1 + ~ ~  (3.90) 
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and 

-- - O ( E )  - a - >’ = 1 - 2ei. 
ET 
52’ 

(3.91) 

The latter is forced by the maximization process over h l  ; .%lhl and, hence Q7 increases 
with h l  until equality is obtained in (3.85) (see below). These two relations are 
now sufficient to specify the outermost boundary layer scaling and the order of the 
dissipation as follows : 

With these scalings, 

(3.92) 

(3.93) 

(3.94) 

For (3.78) and (3.79) to be valid leading-order approximations, we need a1 >> 1 or 
y > 2.4-N - 1 which effectively means D = o(1). 

Using (3.741, the statement 9 = g h ,  can be rewritten as 

[2p44 ’(4* - l ) h ~ ] ’ ~ - ‘  A ( P / O P ’  r =  
[ 2 p  44’3( 1 - 4-N)]2 

(3.95) 

which must now be maximized over b l ,  the axial wavelength in the outermost 
boundary layer. The restriction (3.85) means that maximum r^ ,  

(3.96) 

is achieved at b: = 144F. The total maximal dissipation associated with an N- 
boundary layer solution to the variational problem for the case Q 2 / E  = E‘ is then 

Clearly in the asymptotic limit of small E, this maximum dissipation increases with 
N until it is ultimately independent of E, or in other words. the fluids viscosity. 
Formally, the limit N -+ co in which 

z 0.080.rr (3.98) 

cannot be reached within the framework of our asymptotic analysis owing primarily 
to the failure of scale separation between successive boundary layers in this limit (see 
Kerswell & Soward 1996 for further discussion). However, the speed with which this 
limit is approached as N increases is highly suggestive of its validity. Moreover, an 
alternative but no more defensible procedure suggested by Busse reproduces exactly 
the result (3.98). The asymptotic approach used to derive the expression (3.97) relies 
upon the fact that E is small and independent of N .  Nevertheless, given the result 
(3.97), the question “What is the optimum choice of N at a given small finite value 

(J --$ 271 o-3/2 p-112 4-11/1 
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of E which maximizes 9'?" is irresistible. The answer is given by the expression 

4-Nopt = 12(p/0)3/4~(1-7)/2 (3.99) 

which reproduces the dissipation result (3.98) at small E .  
Finally, p may be determined either directly from (3.41) as 

(3.100) 

or, more simply, through a consistency condition on the jump in I/ across the 
boundary layers. When 9 = 9 b l  to leading order, (3.70), (3.71) and (3.82) imply that 

(3.101) 

which reproduces the same O( 1) result for p. 

3.3.4. Subcritical case: Q 2 / E  << E4-" 
Here we again take 

- E', but now y > 4-N. 
a= 
- -  
E 

In contrast to the previous case, the boundary layer dissipation does not contribute 
at leading order to the total dissipation in this parameter range. In fact the only 
consistent balance has 

and 

9 b l  = O(9c,,)) = O(eT) c 2a - 1 + r N  = a + 1 - 2e1. (3.103) 

These two relations then complete the scaling specification of the boundary layers : 

We search for a consistent solution to (3.77)-(3.80) and (3.41) in the form 

where 
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The leading-order equations are 

359 

(3.106) 

with solution 

Working to next order, 
A 

2nr(u = &i W + CJU) t i / '  + g(li h l ,  (3.108) 

V:" =b:sIns-sA, (3.109) 

= O ( c 9 ) .  Explicit evaluation of 3:' can be avoided by 

and from (3.81) 

where AT/ = €A since 
realizing that for our purposes 

__ 
since each side equals (G,G,p(d/ds)( V / s ) )  to O ( E ) .  This simplifies to 

2n?")(2A + P I )  = g:;! + 29;)'. (3.111) 

Multiplying the second-order version of (3.77) by W,CoJ and integrating over the 
interior gives 

(3.113) 

which is strictly negative as it should be. To complete the solution at this order, only 
bl remains to be specified and this is achieved by maximizing ?(I). With the constants 
A and B defined as follows (equation (3.74)): 
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this maximum is 

2 - 4-N 4 -’ /(2%4-’ j B( 1 - 4 - 9  2( 1-4- ’ )/(2-4-” ) [ 4-N ] (w) (3.114) 

which occurs at 
A 4 p ~  (1-4-”)/(2-4-”) 

h = [  2B( 1 - 4 - 9  ] (3.115) 

In summary, we have found that when 

the upper bound on the total dissipation is 

where f(‘) < 0 is as in (3.114) and E is defined in (3.104). Hence, despite treating a 
considerably more constrained optimal problem here, the extremal is essentially the 
same as the simple Stokes result derived in $3.1! 

4. Discussion 
4.1. Results summary 

We first bring together the mathematical results derived in this paper. For a fluid-filled 
spheroid with boundary 

ZL 

€2 
x2 + y 2  + - = 1 

spinning at it about its axis of symmetry which itself is rotating at $2 (perpendicular 
to $) in inertial space, the viscous dissipation rate 9 (in non-dimensional units of 
pR5w3 where p is the fluid density, R the equatorial radius and w the basic container 
spin rate) satisfies the Stokes upper bound ($2.1) 

VQ, E .  
1671~’ Q2 

105(4c4 + 3c2 + 3) E’ 9 <  

A bound independent of the fluid’s viscosity E and precession rate Q was developed 
in $2.5 based upon the background technique pioneered by Doering & Constantin 
(1992, 1994). For the parameter range of interest, E << 1, 52 << E-’/2, and c = 1, this 
is 

9 < 0.13771 = 0.43. 
For a long precessing cylinder, the analogous results to (4.1) and (4.2) are ($3.1 and 
$3.2) 

(4.2) 

71 Q2 9 < --, V52,E. 
24 E 

and 
9 < 0.10371 = 0.32, 

(4.3) 

(4.4) 
where now the dissipation rate is per unit length in the axial direction. In this 
geometry, the Howard/Busse mean field formulation could also be employed to 
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produce a more tightly constrained optimization problem (53.3). In the asymptotic 
limit of E + 0, the following results were derived when Q2/E  = E ;  and N is a chosen 
positive integer: 

valid for 

and 

valid for 

Most importantly, the tighter upper bounds, (4.5) and (4.6), exhibit the same functional 
dependences on E and Q as the independently derived bounds (4.3) and (4.4). 
This is reassuring but certainly no guarantee that these scaling laws reflect any 
aspect of the true turbulent dissipation rate behaviour. However, the fact that 
the upper bound becomes independent of Q and E for O(E'12)  < 52 is consistent 
with Kolmogorov's scaling view of turbulent dissipation and previous upper bound 
results for unidirectional shear flow (Busse 1970; Doering & Constantin 1992, 1994) 
which are all independent of the fluid's viscosity. There, the driving parameter 

~ the Reynolds number - and the fluid viscosity are one and the same so that 
the dissipation is then formally independent of both. Here, they differ, with the 
combination Q 2 / E  characterizing the precessional driving and E the fluid viscosity, 
but a similar conclusion still appears to hold true. 

As far as the numerical coefficients in the bounds are concerned, very little im- 
provement is obtained even though the variational problem of 43.3 is substantially 
more constrained. Surprisingly, there is only a 20% improvement in the upper bound 
(4.4), and essentially none in the Stokes bound (4.3). Although disheartening in the 
sense that improvement is so minimal, this does indicate that the upper bounds, (4.1) 
and (4.2), derived for the oblate spheroidal case are likely to be 'good' in the sense 
that they probably cannot be lowered in any significant way. 

More generally, the relative performance of the 'background' technique against the 
more involved HowardlBusse formalism is unexpectedly good. It remains to be seen 
whether this can be relied upon in other shear flow and convection problems?. Upper 
bounds published to date using this method (Doering & Constantin 1992, 1994, 1996; 
Constantin & Doering 1995; Gebhardt et al. 1995) have relied on very simple but 
necessarily conservative functional arguments such as those used in the first half of 
42.5 to circumvent the spectral constraint. Consequently, there is considerable room 
for improvement in these bounds, as illustrated by the second half of 92.5. This is an 
ongoing area of investigation (C. R. Doering, private communication). 

4.2. Experimental data 
The first and still most striking data showing how the viscous dissipation varies with 
precession rate were collected by Malkus (1968, figure 4, see also Gans 1970) using 

t Note added in proof: The answer appears to be yes - see Kerswell (1996) 
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FIGURE 1. Malkus’s experimental torque data T (from his figure 4, 1968) normalized by TI ,  the 
laminar torque at Q = 0.5 spl, is replotted here using diamonds on a log,, scale against Q, the 
dimensional precession rate (w = 30n s-’, E = 1.9 x c = 0.9 and R = 0.075 m). The Stokes 
upper bound, 0.035Q2/E, (long dashed line) and background upper bound, 0.43, (short dashed line) 
also so normalized are shown for comparison purposes. 

an oblate container with c = 0.9. This clearly shows the torque exhibiting hysteresis 
between a lower branch which evolves continuously from the initial laminar response 
and a constant upper branch presumably corresponding to ‘saturated’ turbulence. 
Figure 1 shows how the bounds (4.1) and (4.2) compare to these data. After the initial 
laminar phase where the torque varies with Q2, the data on the lower branch do not 
parallel the Stokes upper bound (4.2), seeming, if anything, to vary exponentially with 
D rather than quadratically. Intriguingly, the cross-over point between the bounds, 
Q = 0.45 s-’, is quite close to the value at which the upper branch begins, 0 = 0.5 s-’. 
On this upper branch, the torque clearly becomes independent of the precession rate, 
mirroring the upper bound (4.2) which exceeds it by a factor of 34, i.e. 1.5 orders of 
magnitude$ This sort of discrepancy is fairly typical in upper-bounding work (e.g. 
Busse 1970 who reports an order of magnitude difference between his bound and 
experimental data) and is construed more as a comment on the numerical coefficient 
in the upper bound than the correctness of its parametric scaling on E.  

Later and more extensive experiments were undertaken by Vanyo (see Vanyo 1991 
and Vanyo et al. 1995 for references) in which containers with more Earth-like 
oblateness (c = 1 - &,) were of particular interest. His results were all essentially 
similar regardless of whether precessing spheres, spheroids, cylinders, filled or not, 
baffled or not were studied. The torque, and hence dissipation, would increase 
smoothly for small Q, then undergo a rapid transition to a much larger value leading 
ultimately onto a flat plateau. Once there, the torque would then be independent 
of any further changes in the precession rate l2 (Vanyo 1984, p. 175). Hysteresis 

$ This is assuming the corrected value of R = 0.075 m for the semi-major axis rather than the 
0.0375 m quoted when the factor is just 34/25, and the Stokes bound is actually exceeded (W.V.R. 
Malkus, private communication). 
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was only found for sufficiently non-spherical containers, being absent, for example, in 
spheroidal containers with L' = 1 f & (Vanyo 1991, p. 215) and spheres (Vanyo 1984, 
p. 174). Unfortunately, much of the data were projected down onto a two-dimensional 
space (Vanyo 1991, figure 7 )  suggested by his 'rigid sphere' model (Vanyo & Likins 
1972) and cannot be recovered for our purposes here. Nevertheless, deviances away 
from this rigid sphere model, which essentially proposes the dominant role of a 
laminar Ekman boundary layer in the dissipation, are noteworthy in that they seem 
to tie in with the upper bounds. At large Ekman number, Vanyo found that the Stokes 
dissipation result of Busse (Vanyo, Lu & Weyant 1975) matched the data well. This 
is none other than the Stokes upper-bound result for a sphere. More significantly 
at high forcing, Vanyo remarked that the dissipation became independent of the 
viscosity (Vanyo 1991, p. 221) to explain the eventual divergence between his model 
and the data. 

Figure 2 of Vanyo (1984), however, does allow some direct comparisons to be made. 
The apparent maximum achieved torques in an oblate spheroid with c = 1 - & of 
x 0.1 Nm for 0 = 23.5" and = 0.02 Nm for 8 = 10" are factors of 160 and 240 times 
smaller than the Stokes upper-bound result and 270 and 1370 times smaller than 
the background bound ! This increased discrepancy compared to Malkus's results is 
clearly a direct result of the smaller oblateness of the container and points to an 
undoubted shortcoming of the upper bounds derived here. The flow dynamics are 
unquestionably sensitive to the container's oblateness whereas the upper bounds are 
not. 

4.3. Conclusions 
Experimental measurements of the viscous dissipation realized in highly forced pre- 
cessing systems do seem to reflect the parametric scaling of the 'background' upper 
bound (4.2) : the dissipation ultimately becomes independent of the precession rate 
and fluid's viscosity. At what point this occurs or at what magnitude is far less 
clear but certainly appears sensitive to the container's geometry. The Stokes upper 
bound, although holding true, does not parallel the torque variation at intermediate 
precession rates beyond the initially laminar response. It  appears better suited to 
characterizing slowly spinning containers rather than the rapidly rotating cases of 
most geophysical interest. 

The plausible picture that has emerged then, is one in which a precessing fluid 
system can turbulently dissipate energy at a maximal rate on the order of pR5w3 
unrelated to the precessional forcing or viscosity ( p  is the fluid density, R, a typical 
length scale and o is the spin rate). Both the background method due to Doering 
& Constantin and the Howard/Busse formalism suggest this through optimizing 
solutions with intense boundary layers which dominate the dissipation. To assume 
that this carries over to the realized turbulent flow is reasonable but nevertheless 
presumptuous. Experimental observations clearly indicate the continual crashing of 
coherent structures to small-scale disorder throughout the bulk interior of the flow 
(Malkus 1968; Vanyo et al. 1995; Manasseh 1992, 1994) suggesting that the interior 
may be far from insignificant in the total dissipation budget. This inconsistency 
may simply be a dynamical consequence of the turbulent boundary layers absent 
in the variational formulations studied here. Alternatively and more profoundly, it 
could also be an indication that precessionally stirred turbulent flow has a more 
sophisticated design than to just maximize the global dissipation. In this latter 
scenario, we would then have no right to expect that the variational solution which 
optimizes the dissipation would closely resemble the realized turbulent one. 
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Geophysically, the precessing Earth in its most simplest terms can be considered 
as a precessing oblate fluid-filled spheroid with c = 1 - &, B = 1 day/25800 years 
x sin23.5" and E x 
Non-dimensionally, this is exactly the configuration used by Vanyo (1984) but with 
B and E reduced down to lop7 and respectively. If, as is the suggestion, 
the 'saturated' turbulent dissipation is independent of both B and E ,  then a fully 
turbulent Earth should consume energy at a similar (non-dimensional) rate to that 
found in these experiments. Building in a discrepancy factor of 3 orders of magnitude 
as observed above relative to the 'background' upper bound, this advocates that a 
dissipation of 4.3 x in non-dimensional units or O( 1021) W may potentially be 
realized in a fully turbulent outer core! This is fully 14 orders of magnitude more 
than the well-known laminar value of 0(107) W (e.g. Loper 1975). Of course, there 
is absolutely no observational evidence to indicate that anything like this dissipation 
is occurring in the outer core. In fact, an observational constraint of 1OI2  W based 
upon length-of-day measurements puts a strict limit on how much energy can be 
precessionally supplied to the Earth's core. What it does indicate, however, is the 
potency of precessional driving: even a weakly stirred outer core could extract 
sufficient energy to quench the geodynamo's estimated thirst of lo1'/ 10" W. 

Our conclusion is then a reiteration of that drawn by Roberts & Gubbins (1987): 
there are no reasons to dismiss the possibility of a rotationally (tidally and/or preces- 
sionally) powered dynamo on purely energetic grounds. The fundamental objection 
is, and remains, that it is unclear how the rapidly (daily) fluctuating precessional and 
tidal forcings can generate slow motions (on Ohmic diffusion timescales) in the outer 
core. Some recent progress has been made in this direction through the identification 
of the initial instability mechanism (Malkus 1989, 1994; Kerswell 1993, 1994) which 
operates through the pairwise excitation of inertial waves. Even though their frequen- 
cies are fast, the secular growth of the instability is on the Ohmic diffusion timescale. 
Nevertheless, assessing the feasibility of a rotationally powered dynamo still presents 
a considerable and worthy challenge even though it remains overshadowed by more 
plausible convective alternatives. 

with p = 104kg m-3, R = 3.5 x 106m and u = 7 x 

I am very grateful to Professor A. M. Soward for the many discussions we have 
shared concerning the nature of Professor F. Busse's multi-a solutions. 

Appendix A 
Here we look for the optimal one-dimensional background field for the spherical 

case. The exact spectral constraint (2.36) is intractable as it stands so the more 
conservative version 

(A 1) 

is used (see equation (2.38)). Henceforth, our extremal profile is not guaranteed to 
be the true optimum but only a reasonable approximation to it. Furthermore, since 
f must decrease (monotonically) from 1 at the boundary to 0 in the interior, the 
constraint ( A l )  forces the background field to have a boundary layer of thickness 
O ( E ) .  This ensures that gmin << E(IVU12) so that the upper bound to be minimized 
is just the background dissipation 

1' r( 1 - r)lf'ldr < E 

E(IVUI2) = ;nE r4fr2 dr + O(E) .  (A 2) 
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Looking ahead, the Euler-Lagrange equation to be solved does not have a regular 
solution at the origin. Hence we are forced to consider a solution with f = 0 for 
all radii r < I - 6 where r i  = O(E) is to be determined as part of the solution. The 
minimization problem is then the following: 

minimize 

subject to 

and 
f(1) = I ,  f ( 1  - 6)  = 0, 1°C 1 - a) = p (A 4) 

(A 5 )  r ( l  - r)j’dr = nE i’, 
where 0 < u d 1 and 11 
r = 1 - 6. The Euler-Lagrange equation associated with the Lagrangian 

0 is a free parameter because j’ need not be continuous at 

6aE = 0. (A 9) 

The background dissipation is 

which is minimized when ,u = 0 and a = 1 so that the spectral constraint is just 
satisfied. The smooth profile j = r l / E  discussed in $2.5 has a dissipation of 4x13, 
exceeding the minimum (A 10) by only 12.5%. 

Appendix B 
In this Appendix, we solve the equations 

where 

with boundary conditions 
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numerically to justify the WKB analysis used in 
symmetric about the equator attains the extremal 
expansions 

N N M  

$2.5. An eigensolution with v 
value of 9 and so we use the 

n= 1 n = l  m=1 

N N M  

n=1 n = l  m=l  

where T,(r) = cos(mcos-' r) is the mth Chebyshev polynomial, P,'(cos 6) is the first 
order, nth degree associated Legendre function, and the parities of u and y with 
respect to r have been built in (Kerswell & Davey 1996). Following the work by 
Hollerbach ( 1994a, b), associated Legendre functions are used because the operators 
d/dO(sinO) and g2 then have the very simple action 

This means that (B 1) and (B 2) become respectively 

2n(2n + 1) 2(n - 1)(2n - 1) d2 2 d 2n(2n-1) 
wn - 4n-3 yn-l] = E F  [-+--- dr2 r dr r2 ] on, (B6) 

2n(2n - 1) 
- dr 4n- 1 

Collocating these over the positive zeros of TzM(r)  gives rise to the eigenvalue problem 

AX = E F B x  (B 8) 
where x = [vl,y1,u2,y2,v3,.. .IT, A is block tridiagonal and B is block diagonal. 
Forward iteration of the matrix B-'A then reveals the largest eigenvalue 8. 

Figure 2 clearly shows the modulated Taylor vortex structure of the solution centred 
at the equator for the case of 6 = Figure 3 and table 1 compare the results 
of solving the full PDEs (B 1 j  and (B2j with the WKB approach which reduces the 
problem to a one-dimensional eigenvalue calculation. 

Appendix C 
Here we examine the validity of the assumptions adopted in the main text. The 

main approximation is that (3.28) may be divided into simpler interior (3.38) and 
boundary layer (3.40) equations. In solving these equations, the boundary layer 
component of W ,  wb, is then ignored. The boundary layer version of (3.36) is 

a(1 + p ) s  + 2/&2l/b = p E  v2 - - wb (C 1) ( 2 
from which we can estimate that in the nth boundary layer 

wb = O ( g E 2 r n )  = O(E2r")WL, g w h  = O(E3")9w,. (C 2) 
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i 

FIGURF 2 The numericaily calculated modulated Taylor vortex structure is shown heie clearly 
centred at the equator for f ( r )  = r"'" using a truncation level of N = M = 100: ( a )  corresponds to 
L and ( h )  to y> (contours are at 5 O 4 ,  intervals) 

1 1 

I / 

0 

FIGURE 3. A plot of the largest eigenvalue E F / 6  versus -log,,(h).  The solid line is the result 
of solving the full PDEs whereas the dashed line is the W K B  estimate. The limiting value of 
E,F/6 + 0.103 as 6 + 0 is used in the asymptotics of 92.5. 

since 

Thus we need y + 4r, - rN - a > 0 for n = 1,. . . , N  if (3.40) is to be valid. As 
rl = cy < rz < . . . < r N ,  this condition reduces to 

7 + 4cy - r N  - a  > 0. (C 4) 
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Numerical WKB 

1 
1.25 
1.5 
1.75 
2.0 
2.25 
2.5 
2.75 
3 
3.5 
4 

0.0653 
0.0790 
0.0885 
0.0945 
0.0981 
0.1002 
0.1014 
0.1021 

0.0711 0.492 
0.0831 0.452 
0.0911 0.430 
0.0961 0.418 
0.0990 0.412 
0.1008 0.408 
0.1018 0.406 
0.1023 0.405 
0.1026 0.405 
0.1029 0.404 
0.1030 0.404 

TABLE 1. The results of maximising 9 at various 6 using a full numerical procedure 
and the WKB approximation. 

In the interior 

E v2--  v,=o -v, aw, ( s:) (:: ) 
so that (3.38) is only valid if V ,  = o(EY-'). 

(C 4) which requires 
For the supercritical case, Q 2 / E  = E* >> E4-N,  the most restrictive condition is 

Hence, by choosing N large enough, this effectively means that C2 must be o(1). 

is that 
In the subcritical case, Q 2 / E  = ES << E4-N,  the first criterion broken as y increases 

which must hold if gWb is to be ignored in (3.108). Violation of this, however, only 
compromises the calculation of the higher-order correction f('). Otherwise the only 
other restriction is that y < 2 at which point the solution procedure completely fails 
(e.g. u1 is no longer large). Despite this, the leading-order bound should still hold 
regardless since this has already been derived in $3.1 under general conditions. 
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